# Probability

0

Probability

1 / 30

2 / 30

If for two eventsÂ A">AAÂ andÂ B,P(AB)P(A)×P(B),">B,P(Aâˆ©B)â‰ P(A)Ã—P(B),B,P(Aâˆ©B)â‰ P(A)Ã—P(B),Â then the two eventsÂ A">AAÂ andÂ B">BBÂ are

3 / 30

IfÂ A">AAÂ is an event andÂ Ac">AcAcÂ its complementary event then

4 / 30

5 / 30

6 / 30

7 / 30

8 / 30

9 / 30

10 / 30

11 / 30

12 / 30

If for two eventsÂ A">AAÂ andÂ B,P(AB)=1,">B,P(AâˆªB)=1,B,P(AâˆªB)=1,Â thenÂ A">AAÂ andÂ B">BBÂ are

13 / 30

14 / 30

15 / 30

If two eventsÂ A">AAÂ andÂ B">BBÂ are independent, thenÂ P(AB)i.e">P(Aâˆ©B)i.eP(Aâˆ©B)i.e.Â P">PPÂ (BothÂ A&B)">A&B)A&B)

16 / 30

17 / 30

When the probability that eitherÂ A">Â A">AAÂ orÂ B">BBÂ occur thenÂ P(AB)=P(A)+P(B)">P(AâˆªB)=P(A)+P(B)P(AâˆªB)=P(A)+P(B)Â if the

eventsÂ A">AAÂ &B">&B&BÂ are

18 / 30

If the eventsÂ A">AAÂ andÂ B">BBÂ are mutually exclusive thenÂ P(AB)">P(Aâˆ©B)P(Aâˆ©B)Â is equal to

19 / 30

20 / 30

21 / 30

22 / 30

23 / 30

24 / 30

25 / 30

26 / 30

27 / 30

Q.4 Anita and Binita stand in a line with 7 other people. What is the probability that there are 4 persons between them?

28 / 30

29 / 30

30 / 30